Some Mathematical Methods of PhysicsMcGraw-Hill, 1960 - 300 páginas |
Dentro del libro
Resultados 1-3 de 47
Página viii
... Chapter 4 Vector Spaces and Linear Operators 4.1 Introduction 4.2 Base Vectors and Basis 4.3 Change of Basis 4.4 Linear Operators 4.5 The Representation of Linear Operators by Matrices 4.6 The Operator in the Dual Space 4.7 Effect of ...
... Chapter 4 Vector Spaces and Linear Operators 4.1 Introduction 4.2 Base Vectors and Basis 4.3 Change of Basis 4.4 Linear Operators 4.5 The Representation of Linear Operators by Matrices 4.6 The Operator in the Dual Space 4.7 Effect of ...
Página ix
... Chapter 9 The Laplacian ( v2 ) in One Dimension 9.1 Introduction 9.2 The Infinite Domain , 9.3 The Semi - infinite Domain , 0 ≤ x < + ∞ 9.4 The Finite Domain , 0 ≤x≤L . 9.5 The Circular Domain 9.6 The Method of Images -∞ < x < + ...
... Chapter 9 The Laplacian ( v2 ) in One Dimension 9.1 Introduction 9.2 The Infinite Domain , 9.3 The Semi - infinite Domain , 0 ≤ x < + ∞ 9.4 The Finite Domain , 0 ≤x≤L . 9.5 The Circular Domain 9.6 The Method of Images -∞ < x < + ...
Página x
... Chapter 14 Perturbation of Eigenvalues . 14.1 Introduction 14.2 14.3 A Simple Solution 14.4 Nondegenerate ... Chapter 15 Variational Estimates . 15.1 Introduction 15.2 The Rayleigh Variational Principle 15.3 A Lower Bound 15.4 The Ritz ...
... Chapter 14 Perturbation of Eigenvalues . 14.1 Introduction 14.2 14.3 A Simple Solution 14.4 Nondegenerate ... Chapter 15 Variational Estimates . 15.1 Introduction 15.2 The Rayleigh Variational Principle 15.3 A Lower Bound 15.4 The Ritz ...
Contenido
Solution for Diagonalizable Matrices | 21 |
The Evaluation of a Function of a Matrix for an Arbitrary Matrix | 38 |
Vector Spaces and Linear Operators | 50 |
Derechos de autor | |
Otras 23 secciones no mostradas
Otras ediciones - Ver todas
Términos y frases comunes
applied approximation arbitrary base basis becomes Bessel boundary conditions called Chap chapter Clearly column complete consider constant continuous coordinates corresponding defined definition demonstrated denoted derived determinant diagonal difference discussed eigencolumns eigenfunctions eigenvalue eigenvectors elements equal equation evaluate example exists expansion expression finite follows formula Fourier function given Green's function Hence Hermitian independent infinite integral introduced inverse known limit linear operator Mathematical matrix method multiplication normal notation Note obtained operator orthonormality Physics problem procedure properties Quantum Mechanics relations representation represented result satisfies scattering seen solution solve spherical string Substitution Suppose theorem transform unique unit vanish variable vector vector space verified wave write written yields York zero