Some Mathematical Methods of PhysicsThis well-rounded, thorough treatment for advanced undergraduates and graduate students introduces basic concepts of mathematical physics involved in the study of linear systems. The text emphasizes eigenvalues, eigenfunctions, and Green's functions. Prerequisites include differential equations and a first course in theoretical physics. The three-part presentation begins with an exploration of systems with a finite number of degrees of freedom (described by matrices). In part two, the concepts developed for discrete systems in previous chapters are extended to continuous systems. New concepts useful in the treatment of continuous systems are also introduced. The final part examines approximation methods — including perturbation theory, variational methods, and numerical methods — relevant to addressing most of the problems of nature that confront applied physicists. Two Appendixes include background and supplementary material. 1960 edition. |
Dentro del libro
Resultados 1-5 de 51
Página iii
Gerald Goertzel, Nunzio Tralli. Some Mathematical Methods of Physics Gerald Goertzel Nunzio Tralli Dover Publications, Inc. Mineola, New York Bibliographical Note This Dover edition, first published in 2014, is.
Gerald Goertzel, Nunzio Tralli. Some Mathematical Methods of Physics Gerald Goertzel Nunzio Tralli Dover Publications, Inc. Mineola, New York Bibliographical Note This Dover edition, first published in 2014, is.
Página iv
Bibliographical Note This Dover edition, first published in 2014, is an unabridged republication of the work originally published by McGraw-Hill Book Company, Inc., New York, in 1960. International Standard Book Number ISBN-13: ...
Bibliographical Note This Dover edition, first published in 2014, is an unabridged republication of the work originally published by McGraw-Hill Book Company, Inc., New York, in 1960. International Standard Book Number ISBN-13: ...
Página 4
... + kx1 = ko(x2 _ x1) 1.4 mi: + kxz = ko(x1 _ X2) ( ) While examples of this nature may be given indefinitely, those already presented will suffice to give a picture of the situation. It is of interest to note that some of the above ...
... + kx1 = ko(x2 _ x1) 1.4 mi: + kxz = ko(x1 _ X2) ( ) While examples of this nature may be given indefinitely, those already presented will suffice to give a picture of the situation. It is of interest to note that some of the above ...
Página 9
The reader of this book will note that the definitions are such as to assure that (1.19) is identical in meaning with (1.11) and that (1.20) contains the same information as (1.16). Before entering into the main subject of this section, ...
The reader of this book will note that the definitions are such as to assure that (1.19) is identical in meaning with (1.11) and that (1.20) contains the same information as (1.16). Before entering into the main subject of this section, ...
Página 19
... 0 —i~/5/2 0 -1 o o L,= 0 o 0 0 0 1 Show that the following commutation rules hold: L,L, _ L,L, = iL, L,,Lz ~ L,L, = iL,, LZLa, — LZL, = iL,, L,2 + Lf + L} = 2 (Note this may be written in vector notation as L x L = iL, L r L : 2.) ...
... 0 —i~/5/2 0 -1 o o L,= 0 o 0 0 0 1 Show that the following commutation rules hold: L,L, _ L,L, = iL, L,,Lz ~ L,L, = iL,, LZLa, — LZL, = iL,, L,2 + Lf + L} = 2 (Note this may be written in vector notation as L x L = iL, L r L : 2.) ...
Comentarios de la gente - Escribir un comentario
No encontramos ningún comentario en los lugares habituales.
Otras ediciones - Ver todas
Términos y frases comunes
applied approximate arbitrary base vectors basis Bessel function boundary conditions Chap chapter coefficients column commute complete consider constant continuous systems contour corresponding cylindrical functions defined definition denoted determinant diagonal diagonalizable differential equation Dirac notation domain eigen eigencolumns eigenfunctions eigenvalue equation eigenvector elements evaluate expansion find finite number first follows formula Fourier given Green’s function Hence Hermitian matrix Hermitian operator infinite integral Introduction inverse Laplacian linear operator linearly independent lowest eigenvalue matrix McGraw-Hill Book Company membrane method multiplication nonsingular normal normal matrix Note number of degrees obtained orthonormality conditions perturbation plane procedure QUANTUM MECHANICS relations representation result Ritz method satisfies satisfy scattering solve specified spherical spherical harmonics string Substitution theorem theory tion trial functions vanish variable vector space verified wave write written yields York zero