Some Mathematical Methods of PhysicsMcGraw-Hill, 1960 - 300 páginas |
Dentro del libro
Resultados 1-3 de 12
Página 132
... ду ду д = a a -y + x ax ду хд y a + r ax Hence a + ( 10.18 ) - ar dy r dy a a sin 0 0 = cos 0 дх ar r 20 a - sin 6 2 a cos a 0 + i ду = = a a + i ax ду a ax a ду - 22 ǝ2 + ax2 дуг = ar r ao Ә ід + ( 10.19 ) r do a i a il ( 10.20 ) ar r ...
... ду ду д = a a -y + x ax ду хд y a + r ax Hence a + ( 10.18 ) - ar dy r dy a a sin 0 0 = cos 0 дх ar r 20 a - sin 6 2 a cos a 0 + i ду = = a a + i ax ду a ax a ду - 22 ǝ2 + ax2 дуг = ar r ao Ә ід + ( 10.19 ) r do a i a il ( 10.20 ) ar r ...
Página 255
... ду ду av до ди and ду ax ay ди Эх = ( 1C.5 ) These relations are known as the Cauchy - Riemann equations and are the necessary conditions we set out to obtain . If we assume that the real functions u = u ( x , y ) and v = v ( x , y ) ...
... ду ду av до ди and ду ax ay ди Эх = ( 1C.5 ) These relations are known as the Cauchy - Riemann equations and are the necessary conditions we set out to obtain . If we assume that the real functions u = u ( x , y ) and v = v ( x , y ) ...
Página 288
... ду Because f ( z ) is analytic we also have at this point and 813 дх = = მა ду a2u 0х2 a2u дуг дх2 0 дуг ( 2C.29 ) ( 2C.30 ) ( 2C.31 ) Because of the relations ( 2C.29 ) , ( 2C.30 ) , and ( 2C.31 ) such a point is given the ...
... ду Because f ( z ) is analytic we also have at this point and 813 дх = = მა ду a2u 0х2 a2u дуг дх2 0 дуг ( 2C.29 ) ( 2C.30 ) ( 2C.31 ) Because of the relations ( 2C.29 ) , ( 2C.30 ) , and ( 2C.31 ) such a point is given the ...
Contenido
Solution for Diagonalizable Matrices | 21 |
The Evaluation of a Function of a Matrix for an Arbitrary Matrix | 38 |
13 | 44 |
Derechos de autor | |
Otras 25 secciones no mostradas
Otras ediciones - Ver todas
Términos y frases comunes
applied approaches approximate arbitrary basis becomes Bessel boundary conditions called chap chapter Clearly coefficients column complete consider constant continuous contour coordinates corresponding defined definition demonstrated denoted derived determinant difference differential equation direction discussed eigencolumn eigenfunctions eigenvalue element equal equation evaluate example exists expansion expression finite follows Fourier function given Green's function Hence independent infinite integral introduce known limit linear lowest matrix method multiplication normalized notation Note obtained operator orthonormality path Physics plane positive problem procedure reduces relations replaced representation represented result satisfies scattering solution solve space string Substitution Suppose theorem transformation unique vanish variable vector verified wave write written yields York zero ду