Some Mathematical Methods of PhysicsMcGraw-Hill, 1960 - 300 páginas |
Dentro del libro
Resultados 1-3 de 15
Página 209
... lowest eigenvalue of d2 + a2x + ax3 + bxa ) q = λq dx2 * < + ∞ < x < + ∞∞ where p is finite everywhere and a and b are given constants . 2. Given the eigenvalue problem d2 do2 Yn = λny'n ληψη y ( 0 ) = у ( 2π ) = with solutions yn ...
... lowest eigenvalue of d2 + a2x + ax3 + bxa ) q = λq dx2 * < + ∞ < x < + ∞∞ where p is finite everywhere and a and b are given constants . 2. Given the eigenvalue problem d2 do2 Yn = λny'n ληψη y ( 0 ) = у ( 2π ) = with solutions yn ...
Página 213
... lowest eigenvalue of the operator H. In a like manner , it may be demonstrated that 2 is not greater than the highest eigenvalue of H. As an example , consider the approximate evaluation of the lowest eigenvalue ( 11 = T2 ) of the ...
... lowest eigenvalue of the operator H. In a like manner , it may be demonstrated that 2 is not greater than the highest eigenvalue of H. As an example , consider the approximate evaluation of the lowest eigenvalue ( 11 = T2 ) of the ...
Página 224
... lowest eigenvalue of d2y d02 = - ( λ — e cos2 0 ) y y ( 0 ) = у ( 2π ) Minimize this upper limit . 4. Evaluate approximately the lowest eigenvalue of the vibrating- string problem d2y + λργ = 0 y ( 0 ) = y ( 1 ) = 0 dx2 = ρ 1 for 0 ≤ x ...
... lowest eigenvalue of d2y d02 = - ( λ — e cos2 0 ) y y ( 0 ) = у ( 2π ) Minimize this upper limit . 4. Evaluate approximately the lowest eigenvalue of the vibrating- string problem d2y + λργ = 0 y ( 0 ) = y ( 1 ) = 0 dx2 = ρ 1 for 0 ≤ x ...
Contenido
Solution for Diagonalizable Matrices | 21 |
The Evaluation of a Function of a Matrix for an Arbitrary Matrix | 38 |
13 | 44 |
Derechos de autor | |
Otras 25 secciones no mostradas
Otras ediciones - Ver todas
Términos y frases comunes
applied approaches approximate arbitrary basis becomes Bessel boundary conditions called chap chapter Clearly coefficients column complete consider constant continuous contour coordinates corresponding defined definition demonstrated denoted derived determinant difference differential equation direction discussed eigencolumn eigenfunctions eigenvalue element equal equation evaluate example exists expansion expression finite follows Fourier function given Green's function Hence independent infinite integral introduce known limit linear lowest matrix method multiplication normalized notation Note obtained operator orthonormality path Physics plane positive problem procedure reduces relations replaced representation represented result satisfies scattering solution solve space string Substitution Suppose theorem transformation unique vanish variable vector verified wave write written yields York zero ду